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Abstract—Independent Component Anal-
ysis (ICA) is an extension of the well-
known technique for multivariate data anal-
ysis called Principal Component Analysis
(PCA). The main difference between both
techniques is that ICA provides independent
components instead of uncorrelated compo-
nents. As a consequence, ICA is more ade-
quate for applications such as image compres-
sion, where the most important information
is contained in the high-order relationships
among the pixels. In this paper, we propose
an ICA-based algorithm for image compres-
sion which is an extension of the EASI algo-
rithm (Equivariant Adaptive Separation via
Independence) proposed by Cardoso and La-
held [6]. We also compare the performance
of our algorithm with PCA and with the Dis-

crete Cosine Transform (DCT).
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learning, image compression

This work has been supported by FEDER, (grant
1FD97-0082).

I. INTRODUCTION

Self-organized neural networks have been widely
used for extracting important characteristics in a
data set [1]. For instance, the learning algorithms
based on Principal Component Analysis (PCA) ex-
tract uncorrelated components (principal compo-
nents). In general, we can obtain a substantial di-
mensionality reduction because few principal com-
ponents contain most of the intrinsic information in
the input [1]. However, PCA-based algorithms do
not consider the information contained in the high-
order correlations.

Independent component analysis (ICA) is a gen-
eralization of PCA which incorporates high-order
moments [2]. The aim in ICA is to extract sta-
tistically independent components from the input
data instead of uncorrelated components. As a con-
sequence, ICA looks more adequate than PCA for
applications where there exists high-order relation-
ships in the input data, such as image compression
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[3] and face recognition [4]. In fact, our simula-
tion results show that few statistically independent
components contain most information of the input
data and these components preserve more informa-
tion than the principal components.

This paper is structured as follows. Section II
reviews some concepts about ICA and explains the
relationship between ICA and image compression.
In Section IIT we propose an image compression al-
gorithm which is based on the EASI (Equivariant
Adaptive Separation via Independence) algorithm
proposed by Cardoso and Laheld [6]. In Section IV
we analyze the stability of our algorithm. Section V
presents several simulation results. Finally, Section
VI is devoted to the conclusions.

II. INDEPENDENT COMPONENT ANALYSIS

Mixture Separation

s X y

= s v

Siglelayer neural network

Fig. 1. Blind source separation model.

A number of ICA-based algorithms have been
developed in the context of Blind Source Sepa-
ration (BSS) [5], [6]. The basic model in ICA
and BSS is shown in Figure 1. It is assumed
that a set of zero-mean statistically independent
non-Gaussian distributed signals (sources), s =
[s1(n),--+,sn(n)]T, are combined using a N x N
non-singular matrix, A, to obtain a vector of obser-
vations x = [z1(n),---,zn(n)]T given by

x = As (1)

The objective in BSS is to recover all the compo-
nents in s from the observations x without know-
ing the sources nor the mixing system. Towards
this aim, the observations are processed by a linear
neural network with N? synaptic weights w;; and
N outputs, y;(n) = Zjvzl w;jz;(n). In a compact
form, we can write

y=WTx (2)



where y is a N x 1 vector and W is a N x N matrix
containing the synaptic weights w;;.

A way to recover the sources is to find a matrix
W such as the outputs are statistically independent.
The justification of this idea is a consequence of the
Darmois-Skitovich theorem [7], [8]: if s is a vector of
statistically independent signals with non-Gaussian
distribution then y = Gs = WT As is a vector of
statistically independent signals if and only if G =
AP. This means that the statistical independence
of the output implies source separation.
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Fig. 2. Image synthesis model.
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It is interesting to note the relationship between
the BSS problem and image compression [9]. Figure
2 shows the image synthesis model. We can inter-
pret x as a linear synthesis of the unknown com-
ponents in s. The goal in image compression is to
obtain a basis matrix W so that y = W7x are the
underlying components. Compression is achieved
because we do not retain and code all the compo-
nents in y but only a number p < N (typically those
that contain larger energy [10]). Let us denote ¥ to
the IV x 1 vector that contains the retained compo-
nents. The recovered image can be computed as

x=WTy (3)
where W=7 denotes the inverse of W7T.

III. GENERALIZED EASI ALGORITHM

In this section we propose an image compression
algorithm called Generalized Equivariant Adaptive
Separation via Independence (GEASI) which is
based on the algorithm proposed by Cardoso and
Laheld in the context of BSS [11]. The encoding
algorithm works as follows. First, the image is par-
titioned into blocks of size n x n, X, and then these
blocks are converted into n? x 1 vectors, x. The
weight matrix, W, is computed using the learning
rule

W(k+1) = W(k)—puW(E)(Elyy"] -1

+ Elyg" ()€ - EERH)Y]) (4)
where gZ(y) = [g(y1), ---, 9(yn2)]¥ contains a non-
linear function g(.), I is a n? x n? identity matrix
and £ is a n? x n? diagonal matrix containing +1.
In practice, the statistical moments in (4) are es-
timated using L samples of the outputs and each
observation x is passed P times.

Note that the first term in (4), E[lyy’] — I, ex-
tracts uncorrelated components, E[yy?] = I. How-
ever, the nonlinear function g¢(.) incorporates high-
order statistics to the learning rule and, therefore,
the GEASI algorithm extracts independent compo-
nents. The main difference between the learning
rule (4) and the EAST algorithm [11] is that we have
included a diagonal matrix £ because we have no
information about the statistical parameters of the
components. Recall that we only suppose that they
are statistically independent and have zero-mean.
The stability analysis in Section IV gives some clues
to find the matrix €.

Note that both the observation vector and the
output vector have the same dimension, n2. In or-
der to obtain a dimensionality reduction, we need
to determine which outputs must be retained in the
encoder. In theory, we must retain the components
closer to the original image. However, this criterion
is computational expensive because we must com-
pute the mean square error between the original im-
age and the image obtained from each component.
For this reason, we propose to retain the p compo-
nents with largest energy, E[y?].

The decoding process consists of evaluating the
expression (3) using the retained components. Note
that the decoder also need to know the weight ma-
trix W. However, this overhead is small in compar-
ison with the image size.

IV. StABILITY ANALYSIS OF THE GEASI
ALGORITHM

The stability of GEASI algorithm can be ana-
lyzed using concepts of dynamic systems [1], [12].
We will suppose that p is a small positive quantity
and x is stationary. Then, the stationary points
of the recursion (4) corresponds to the roots of the
Ordinary Differential Equation given by

dW

- - -W(Elyy"] -1

+ Elyg" (€ - EE)Y) (5

Note that the solutions where statistically indepen-
dent components are extracted, y = s, E[s?] =
1, i = 1,...,n? are roots of (5). In addition, in
appendix A we demonstrate that these points are
attractors of (4) when the following condition is sat-
isfied

Coi +Co; <0 iyj=1,.m% i # (6)

where Cs, = €;(E[s;9(s;)] — E[g'(s:)]), €; is the i—th
entry of £ and ¢'(.) is the first derivative of g(.).
From the stability analysis, we can devise two meth-
ods for choosing the matrix £ in order to extract
the components in the original image without know-
ing their statistical characteristics. The simplest
method consists of using a matrix fixed a priori
=1, i=1,..,land ¢ =—1,i=1+1,..,n% In
this case, we suppose that

Cs;, = E[sig9(s:)] — Elg'(s:)] <0, i =1,...,1
Cs; = E[sig(si)] — E[g'(s:)] >0, i =1+ 1,...,n* (7)



The second method consists of determining the pa-
rameters ¢; in each iteration in order to obtain
Cy; <0, i =1,..,n% ie., we evaluate the expres-
sion

Cy = Elyig(ys)] — Elg' ()], i=1,...n"  (8)

where the expectations are computed using L sam-
ples of the output y;. Then, we set ¢, = —1 when
Cy; >0 and ¢; = 1 when Cy, < 0.

V. SIMULATION RESULTS

In this section the results of several computer
simulations are presented to illustrate the perfor-
mance of the GEASI algorithm. For comparison, we
also present the results obtained using the decorre-
lating algorithm

W(k +1) = W(k) - uW (k) (Elyy"] - 1)  (9)

and retaining the outputs with most energy. We
have used a step-size pu = 107%, estimation length
L = 20 and P = 20 passes of the data. We have
also compared our results with the one-dimensional
Discrete Cosine Transform (DCT) [13]. The perfor-
mance has been measured using the peak signal to
noise rate (PSNR)
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where MSE is the mean square error between the
original and the recovered image.

In the first experiment, we have considered the
512 x 512 image in Figure 3 which has been parti-
tioned into 4 x 4 blocks. Each block has been sepa-
rately made zero-mean. The separating system has
processed 16,384 observations x of dimension 16 x 1
randomly selected. The 16 x 16 basis matrix W
was learned using the algorithm (4) with a fixed
step-size parameter p = 107%, estimation length
L = 20, P = 20 passes of the data, the non-linear
function g(y;) = tanh(yi), ¢ = =1, i = 1,...,8
and ¢ = 1, ¢ = 9,...,16. Figure 4 (left) shows
the images obtained from the outputs with largest
energy. It is apparent that the images have high vi-
sual quality although the image obtained from only
one component presents a block effect. For com-
parison, Figure 4 (right) shows the images obtained
using the decorrelating algorithm (9) and retaining
several principal components. Figure 5 shows the
PSNR obtained using the proposed algorithm, the
decorrelating algorithm (9) and the DCT. We can
see that the GEASI algorithm provides the best re-
sults.

Recall that in the GEASI algorithm, we retain
the components with largest energy. In order to
validate this decision criterion, Table I presents the
energy of each output and the MSE between the
original image and the image obtained using the cor-
responding component. We can see that the outputs
with largest energy have the minimum MSE. On the
other hand, small energy implies larger MSE.

We have also tested the behavior of the GEASI
algorithm for several non-linear functions. Figure 6
shows the PSNR obtained using the sigmoid func-
tion and the hyperbolic tangent function. The ma-
trix £ is estimated in each iteration (aprox. I) or
it is a fixed matrix with ¢;, = —1, 4 = 1,...,8 and
e=1,1=9,...,16 (aprox. II).

In a second experiment, we have tested the per-
formance of our algorithm when the matrix W ob-
tained in the first experiment is used to compress
other images. Figure 7 shows the original image
“goldhill” and the recovered image obtained from
the seven statistically independent components with
largest energy. We can see that the visual quality is
high. For this image, we have obtained a PSNR of
28.41 dB.

VI. CONCLUSIONS

In natural images, most of the important infor-
mation is contained in the high-order relationships
among the pixels. This property is not considered
in PCA-based algorithms because only second-order
statistics are used. In this paper, we have proposed
an image compression algorithm which uses non-
linear functions to extract the statistically indepen-
dent components in the image instead of uncorre-
lated components. Simulation results show that the
image representations based on statistically inde-
pendent components are more adequate than repre-
sentations obtained from decorrelated components.

Fig. 3. Experiment I: Original image “peppers”

APPENDIX
I. SEPARATING POINTS OF GEASI ALGORITHM

In section IV, we have determined that the points
where the statistically independent components are
extracted correspond to stationary points of the
GEASI algorithm. In this appendix we will find
the conditions which guarantee that these points are
attractors of the algorithm. For simplicity reasons,
this analysis is performed considering only two com-
ponents. First we will write the expression (5) in
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Fig. 4. Recovered images for several retained components using the GEASI algorithm (left) and the decorre-
lating algorithm (right).
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Fig. 5. Experiment I: PSNR obtained using the
GEASI algorithm, the decorrelating algorithm

and the DCT

G—=o  Sigmoid function (aprox. I)
#——  Sigmoid fuction (aprox. Il)
*——  Tanh (aprox. I)
36 |*——=# Tanh (aprox. Il)

PSNR (dB)
@
8

L L L L L
3 4 5 7 8

6
Number of retained components

L L L
9 10 11 12

Fig. 6. Experiment I: PSNR obtained using several

non-linear functions

| Component | Energy | MSE |
2 0.6667 | 158.7164
3 0.6677 | 159.1449
7 0.6842 | 160.9255
6 0.6865 | 160.7633
5 0.7336 | 157.7315
8 0.7424 | 158.9404
4 0.7946 | 155.8674
1 0.8101 | 154.5680
11 0.8174 | 155.5581
10 0.8386 | 155.7895
15 0.8536 | 144.5303
14 0.8766 | 146.5909
9 0.8772 | 145.2187
12 0.9207 | 144.5720
16 0.9653 | 139.0012
13 0.9713 | 140.2258

TABLE 1

EXPERIMENT I: ENERGY AND MSE FOR EACH

COMPONENT

Fig. 7. Experiment II. (a) Original image “goldhill”
and (b) recovered image

terms of the mixing/separating matrix G = W1 A

dGT
dt

+

-G" (Elyy"] -1

Elyg" (v)I€ - €E[g(y)y™]) (11)

In the particular case of two components, we obtain

dgi11
== =
11 dt
+
dg12
F = — =
12 dt
+
dgzl
= == =
21 dt
dga2
F = — =
22 dt

—g11(E[yi] = 1) = g21 (Elyayn]
e1E[y29(y1)] — e2E[g(y2)y1])
—912(E[y}] = 1) — g22 (Elyayn]
e1E[y29(y1)] — e2E[g(y2)y1])
—g11 (E[y211]e2Ely19(y2)]
e1E[g(y1)y2]) — g21(Elyz] - 1)
=912 (E[y211]e2Ely19(y2))]
e1Elg(y1)y2]) — g22(Ely3] — 1)

Now, the derivatives of these equations respect to
the coefficients in G are

OF;;

—2 = —E[y]+1 - 2g;;E[yis;]

agz’j



2
= > 9wi(Elynsi) + e;Elyrg’ (v:)si]
k=1
ki

— exElg(yr)s;]) 4,5 = 1,2

OF;; 2
3 2 = —29Blyisi) — Y gk (Elyksi]
gil 1
ki
+ €Elyrg (yi)si) — ex Elg(yr)si])
i,5,l=1,2, 1 #j
OF;;
3 = —Elywi] — €:Elyig(:)] + e Elg(yi)y:]
aij
—  g15(E[s;jy:] + €. E[s;9(y:)]
- eiE[g,(yl)s]yz]) iajvl = 1727 l 757'
OF;;
9a, = ~9mi(Blsyi] + Elsig(yi)]
gmi

- E[gl(ym)slyl]) i7j7m7l = 1727 m 7£ 7’.7 l7é.7

Most of the second derivatives vanish in the point
where each output extract a single component, G =
I. In fact, the only non-zero derivatives are

0F;
= =2
0911
OF
5 2 _ _1_ e1E[g'(s1)] + e2E[g(s2)s2]
g12
OF
5 2 _ _1_ e1E[g(s1)s1] + €2E[g'(s2)]
g21
OF:
B 21 = —-1- €2E[g(82)82] + 61E[gl(81)])
g12
OF:
i 2L = _1—E[g(s2)] + €1 E[g(s1)s1]
g21
0F5
- _9 12
5o (12)

Finally, the matrix formed by the second derivatives
is given by

OF;  0F11  OF1;n  9Fn
0911 0912 0921 0922

OF1; OF1; 09F12 OF12
9911 Og12  Oga1  Ogan

H =
OFa  0Fa 0Fa 0Fn
0911 0912 0921 0922
OFay  OFaa OFaa OFa2
L 0911 9912 0921 0g22 |
[ -2 0 0 0
0 -1- €1E[gl($1)]+ —-1- €1E[g(81)$1] 0
+e2E[g(s2)s2] e2E[g'(s2)]
0 -1- €2E[g(82)82] -1- 62E[gl(82)] 0
+e1E[g'(s1)] €1E[g(s1)s1]
0 0 0 —2 |

The matrix H has four eigenvalues: e; = e; = e3 =
—2 and e4 = Cy, + Cs, where Cs;, = €;(E[sig(s;)] —

E[g'(s;)])- It is easy to find that the following con-
dition guarantees that the eigenvalues have negative
real part

Cs;, +Cs, < 0=
e1(E[s19(s1)] — Elg'(s1)]) +
e2(E[s29(s2)] — E[g'(s2)]) <0 (13)

As a consequence, in order to guarantee that the
desired solutions are attractors of the GEASI algo-
rithm, the non-linear function g(.) must satisfy the
condition (13). In the general case of N statisti-
cally independent components, the non-linear func-
tion g(z) must guarantee

Coi +Cs; <0 4,5 =1,..,N, i#j (14)
where C,, = €;(E[s:9(s:)] — E[9'(s:)])-
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